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Abstract

By applying a unitary transformation method, we have derived the leading-order corrections on

the effective Hamiltonian of a dynamical model developed in Phys. Rev. C54, 2660 (1996) for

electromagnetic pion production reactions. The resulting energy-independent one-loop corrections

on the baryon masses and the γN → ∆ vertex interaction are associated with the structure of the

nucleon and ∆ and have been calculated within a constituent quark model. We find that the

one-loop corrections on the magnetic M1 transition of the γN → ∆ are very small, while their

contributions to the electric E2 and Coulomb C2 transitions are found to be in opposite signs of

that due to pion cloud effects associated with the scattering states. Our results further indicate that

the determination of the nonspherical L = 2 components of the constituent quark wavefunctions

of N and ∆ from the extracted empirical E2 and C2 form factors requires a rigorous and complete

calculation of meson cloud effects. We also find that the one-loop corrections on the non-resonant

pion production operator can resolve the difficulty in describing the near threshold γp → π0p

reaction. Possible future developments are discussed.

PACS numbers: 13.40.Gp, 13.60.Le, 14.20.Gk, 24.10-i
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I. INTRODUCTION

In the past few years, extensive and precise data of electromagnetic meson production

reactions have become available and some of these data have been used to extract the

information about the nucleon resonances[1]. On the other hand, theoretical models for

analyzing these reactions are still far from complete. Even in the simplest and well-studied

∆ excitation region, none of the most often applied models[2, 3, 4, 5, 6] has been able to

give predictions which agree perfectly with the single pion production data accumulated

recently, in particular the data on spin observables and longitudinal-transverse interference

cross sections. While these models can give an overall good description of fairly extensive

data, efforts must be made to remove the remaining discrepancies such that a complete

understanding of the ∆ resonance can be obtained. The experiences gained from these

efforts will undoubtly be very useful for investigating the much more complex higher mass

N∗ resonances. In this work, we report on the progress we have made in this direction,

focusing on the dynamical model we have developed in Refs.[2, 3] (called the Sato-Lee (SL)

model in the literatures). In particular, we would like to explore how the bare γN → ∆

parameters extracted within the SL model can be better understood in terms of the structure

of N and ∆. We would also like to see how the non-resonant pion production operator in

the SL model can be improved.

We first recall one of the most interesting results from the SL model. It was found that the

pion cloud effects give very large contributions to the γN → ∆ transition form factors and

is the source of the differences between the values predicted by the conventional constituent

quark model and that extracted from empirical amplitude analyses. The predicted very

pronounced Q2−dependence in electric E2 and Coulomb C2 transitions have motivated

several recent experimental efforts. These pion cloud effects are calculated from the following

expression

Γ̄γN,∆(W, q) = Γ0
γN,∆(q) +

∫

dkk2vtree
γπ (q, k)

1

W − Eπ(k) − EN(k) + iǫ
Γ̄πN,∆(W, k)

where Γ0
γN,∆ is the bare vertex, vtree

γ,π is the non-resonant γN → πN amplitude calculated

from the standard Pseudo-Vector Born terms and the ρ and ω exchanges, and Γ̄πN,∆(W, k)

is the dressed ∆ → πN vertex. One observes from the above equation that these pion cloud

effects are due to pions in the scattering states which can reach the on-shell momentum

asymptotically.
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We now examine how the above procedure is related to our current understanding of

hadron structure. Because of the chiral symmetry of QCD is spontaneously broken, it is

generally believed that in the region where the momentum transfer is not too large the

structure of the nucleon and ∆ can be considered as systems made of constituent quarks

and virtual pions. We thus expect that their responses to the external electromagnetic

field can be from the constituent quarks and also from the virtual pions. Obviously the

pion-loop integration in the above equation do not account for all of the effects due to the

virtual pions in hadrons. The leading term Γ0
γN,∆ must still contain some effects due to

virtual pions which never go on-shell during the N -∆ transitions. In this work, we will

show how the corrections due to these virtual pion cloud effects can be derived by applying

the unitary transformation method. In a consistent derivation, the one-loop corrections on

the non-resonant pion production operator of the SL model have also been derived. These

one-loop corrections are also energy-independent and are different from those due to pions

in scattering states. These corrections are expected to have important effects in the region

where the pion electromagnetic reactions are sensitive to the non-resonant amplitudes.

In section II, we recall a dynamical formulation within which the leading order one-loop

corrections on the effective Hamiltonian of the SL model are derived. In section III, the

consequences of these leading order corrections on the γN → ∆ transitions are calculated

and interpreted within a constituent quark model. The one-loop corrections on the non-

resonant pion production operator are then investigated in section IV, focusing on the s-wave

amplitude of the near threshold π0 photoproduction reaction. Possible future developments

are discussed in section V.

II. FORMULATION

As explained in Ref.[2], the SL model is constructed by applying a unitary transforma-

tion method to deduce from relativistic quantum field theory an effective Hamiltonian for

describing meson-baryon reactions. The details of the employed unitary transformation has

been given in Refs.[2, 7] and will not be repeated in this paper. Here we only emphasize

that the starting point of the unitary transformation method is a field theoretical Lagrangian

density. This is identical to other more familiar approaches for constructing dynamical mod-

els of meson-baryon interactions, such as those based on the ladder Bethe-Salpeter[8, 9] or
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three-dimensional ladder Bethe-Salpeter equations[10, 11, 12, 13, 14]. In the lowest order,

all approaches yield very similar, if not completely identical, scattering amplitudes. Their

differences are in the resulting dynamical equations which are used to include nonperturba-

tively certain classes of higher order effects that are deemed to be important for the processes

considered.

To illustrate the unitary transformation method, it is sufficient to consider a model La-

grangian density L(ψN , ψ∆, φπ) describing the pseudo-vector coupling between π, N and

∆ fields. By using the standard canonical quantization procedure, a Hamiltonian can be

constructed. To simplify the presentation, the spin and isospin variables as well as the anti-

particle components are suppressed here. The resulting Hamiltonian can then be schemati-

cally written as

H = H0 +HI +Hem , (1)

with

H0 =
∑

B

∫

dpb†B(p)bB(p)EB(p) +
∫

dka†π(k)aπ(k)Eπ(k)

where b†B(p)(bB(p)) is the creation(annihilation) operator for a baryon with momentum p,

and a†(k)(a(k)) for a pion with momentum k. The energy is defined as Eα(p) = (mα+p2)1/2

with mα denoting the mass of particle α. Clearly, H0 is the sum of free energy operators for

baryons(B = N,∆) and pion(π). The strong interaction Hamiltonian in Eq. (1) is

HI =
∑

B,B′

[Γ0
πB′,B + h.c.] , (2)

with

Γ0
πB′,B =

∫

dpdkb†B′(p − k)bB(p)a†π(k)FπB′,B(p − k,k; p), (3)

where FπB′,B(p′k; p) is a vertex function describing the strength of the πB ↔ B′ transition

illustrated in Fig. 1. The corresponding electromagnetic interaction deduced from applying

the minimum substitution on the considered pseudo-vector coupling Lagrangian density

L(ψN , ψ∆, φπ) can be written as Hem =
∫

dxA · J , where Jµ is the current density operator

and A is the photon field. The resulting electromagnetic current can be schematically written

as

Jµ = Jµ
π + Jµ

B′,B + Jµ
B′,B,π, (4)
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where Jµ
π , Jµ

B′,B, and Jµ
B′,B,π define γπ → π, γB → B′, and the contact γB → πB′ transitions

respectively, as illustrated in Fig. 2. The details of these currents will be given in section

III.

B

B’ π

FIG. 1: The vertex interaction Γ0
πB′,B

(a) (b) (c)

B

B’

B

B’

π

FIG. 2: Electromagnetic interaction Hem : (a) Jµ
π , (b) Jµ

B′,B, and (c) Jµ
B′,B,π.

The first step of the derivation is to decompose the strong interaction Hamiltonian into

two terms

HI = HP
1 +HQ

1 , (5)

where

HP
1 = Γ0

πN,∆ + h.c. , (6)

HQ
1 = [Γ0

πN,N + Γ0
π∆,N + Γ0

π∆,∆] + h.c. . (7)

Obviously, HP
1 describes the physical process, while the processes in HQ

1 can not occur in

free space because of the violation of energy conservation. The second step is to perform

unitary transformations on H to construct an effective Hamiltonian, which does not contain

unphysical processes such as those due to HQ
1 . Keeping only the terms up the second order

in HI , the resulting effective Hamiltonian is of the following form

Heff = U †
2U

†
1HU1U2

= H0 +HP
1 +HP

2 + [U †
2U

†
1HemU1U2] + ∆Q , (8)
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where Un = exp(iSn) is the n-th unitary transformation with Sn ∝ (HI)
n, HP

1 has been

defined in Eq. (6) and

HP
2 = ([HP

1 , iS1] +
1

2
[HQ

1 , iS1])
P (9)

Note that the commutators in Eq. (9) can generate both physical and unphysical processes

and only the terms for physical processes are kept in HP
2 . The unphysical processes in Heff

is contained in the last term of Eq. (8)

∆Q = {[H0, iS1] +HQ
1 } + {[H0, iS2] +HQ

2 } , (10)

with

HQ
2 = ([HP

1 , iS1] +
1

2
[HQ

1 , iS1])
Q . (11)

HQ
2 is defined by the same commutators in HP

2 except that only the unphysical processes

are kept here.

The desired effective Hamiltonian is obtained by eliminating the unphysical processes ∆Q

Eq. (8). Obviously, this can be achieved by imposing the following conditions

[H0, iS1] +HQ
1 = 0 , (12)

[H0, iS2] +HQ
2 = 0 . (13)

To find S1, consider the matrix elements of Eq. (12) between any two eigenstates | a > and

| b > of H0; for example H0 | N >= EN | N > and H0 | πN >= (Eπ + EN) | πN >. We

then obtain a relation (Eb − Ea) < a | iS1 | b >=< a | HQ
I | b >, indicating that S1 plays

the same role as HQ
I in defining the interaction mechanisms. It is then easy to verify that

the general solution of Eq. (12) can be written as the following operator form

S1 = −i
∑

B′,B

∫

dpdk
FπB′,B(p − k,k; p)

EB(p) − EB′(p − k) − Eπ(k)
θ(mπ +mB′ −mB)b†B′(p − k)bB(p)a†π(k)

+ h.c. (14)

where the step function is defined as θ(x) = 1(0), for x > (<)0

For investigating πN scattering and pion photo- and electro-production at energies below

two-pion production threshold, it is sufficient to consider interactions defined within the

Hilbert space N⊕∆⊕πN⊕γN . By using Eq. (3) and Eq. (14), we can evaluate the matrix
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elements of HP
2 , defined by Eq. (9), between two one-baryon states. This will generate

the one-loop corrections, Σ0
N and Σ0

∆, to the masses of N and ∆, as illustrated in Fig. 3.

Explicitly, we find

Σ0
N =

i

2

∑

B′=N,∆

[< N | Γ0†
πB′,N | πB′ >< πB′ | S1 | N >

− < N | S1 | πB′ >< πB′ | Γ0
πB′,B | N >], (15)

Σ0
∆ =

i

2
[< ∆ | Γ0†

π∆,∆ | π∆ >< π∆ | S1 | ∆ >

− < ∆ | S1 | π∆ >< π∆ | Γ0
π∆,∆ | ∆ >]. (16)

Using the solution Eq. (14) for S1 to evaluate the above two equations, we will get expres-

sions involving one-loop integrations over energy− independent propagators which are also

specified in Eq. (14). The detailed forms will be given in the next section where we will

perform calculations using a model for the vertex interaction Γ0
πB′,B. Note that Σ0

∆ does

not include the loop over intermediate πN state since the effects due to ∆ → πN is already

accounted for by HP
1 of Eq. (6) and must be excluded in Q interactions.

N ∆

FIG. 3: One-loop corrections Σ0
N and Σ0

∆ on the nucleon and ∆

N ∆

FIG. 4: πN interactions.

Taking the expectation value of HP
2 between two πN states, we then generate the πN

potential vπN , illustrated in in Fig. 4. Extending the procedure described above to also

include spin and isospin indices as well as the anti-particle components and ρ meson, the

matrix elements of vπN given explicitly in the SL model can then be obtained. On the other

hand, the one-loop corrections Σ0
N and Σ0

∆ are not treated explicitly in SL model.

To determine S2 from Eq. (13), we need to know the mechanisms contained inHQ
2 defined

by Eq. (11). With the solution Eq. (14) for S1, one can easily see that HQ
2 can generate the
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B

B’

B

FIG. 5: Unphysical processes due to HQ
2 .

unphysical B → ππB processes illustrated in Fig. 5. With the similar procedure employed

in solving Eq. (12) for S1, we find that the solution of Eq. (13) from eliminating the

unphysical processes illustrated in Fig. 5 can be written explicitly as the following operator

form

S2 = −i
∑

B′,B,B̄

∫

dpdkdk′FπB′,B̄(p − k − k′,k′; p − k)FπB̄,B(p − k,k; p)

EB(p) −EB′(p − k − k′) − Eπ(k) − Eπ(k′)
θ(2mπ +mB′ −mB)

[
θ(mπ +mB′ −mB̄)

EB′(p − k − k′) − EB̄(p − k) + Eπ(k′)
(
θ(mπ +mB̄ −mB)

2
+ θ(−mπ −mB̄ +mB))

+
θ(mπ +mB̄ −mB)

EB(p) −EB̄(p − k) −Eπ(k)
(
θ(mπ +mB′ −mB̄)

2
+ θ(−mπ −mB′ +mB̄))]

b†B′(p − k − k′)bB(p)a†π(k′)a†π(k) + h.c. (17)

We note that S2 does not play any role in generating effective the Hamiltonian up to the

second order in Γ0
πB,B′ . But it is needed to evaluate the effective electromagnetic interaction

operator defined by the term [U †
2U

†
1HemU1U2] in Eq. (8).

(a) (b) (c) (d) (e)

N,∆
∆

N

FIG. 6: Leading order terms of pion photoproduction: Γ0
γN,∆=(a), vtree

γπ = (b) + (c) + (d) + (e)

Keeping only the terms up to the same second order inHI , we can write [U †
2U

†
1HemU1U2] =

∫

dxA · Jeff with the effective current defined by

Jµ
eff = Jµ + [Jµ, iS1] +

1

2
[[Jµ, iS1], iS1] + [Jµ, iS2] + [[Jµ, iS1], iS2] . (18)
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By using the properties of S1 and the electromagnetic coupling illustrated in Fig. 2, one can

see that the first two terms of Eq. (18) for Jµ
eff generate the tree mechanisms shown in Fig.

6. Explicitly, we can see the following correspondences :

Fig. 6a : < ∆ | Jµ
∆,N | γN >, (19)

(Fig.6b + Fig.6c) : < πN | [Jµ
N,N , iS1] + Jµ

N,∆iS1 | γN >, (20)

Fig.6d : < πN | [Jµ
π , iS1] | γN >, (21)

Fig.6e : < πN | Jµ
N,N,π | γN > . (22)

Extending the procedure described above to also include spin and isospin indices as well

as the anti-particle components and ρ and ω meson-exchange, the matrix elements for vγN

given explicitly in the SL model can then be obtained.

The one-loop corrections on the γB → B′ vertex and non-resonant γN → πN amplitude

can be generated from the following operators in Eq. (18),

Jµ,1−loop = [Jµ, iS1] +
1

2
[[Jµ, iS1], iS1] + [Jµ, iS2] + [[Jµ, iS1], iS2] . (23)

For γN → ∆, the possible intermediate states involved in evaluating the one-loop corrections

are illustrated in Fig. 7 with the following correspondences:

Fig.7a : < ∆ | [Jµ
B′,B,π, iS1] | γN >, (24)

Fig.7b : < ∆ | −iS1J
µ
B′,BiS1 | γN >, (25)

Fig.7c : < ∆ | 1

2
[[Jµ

π , iS1], iS1] + [Jµ
π , iS2] | γN >, (26)

Fig.7d : < ∆ | 1

2
(Jµ

B′,BiS1iS1 + iS1iS1J
µ
B′,B) | γN > . (27)

Similar expressions and diagrams are also for the one-loop corrections, < N | J1−loop
µ | γN >,

for the nucleon electromagnetic form factors.

The one-loop corrections on the non-resonant γN → πN amplitudes can also be obtained

by taking the matrix element of J1−loop
µ between πN and γN states. We will elaborate this

more complex object in section IV.

With the above derivations, the effective Hamiltonian Eq. (8) within the subspace N ⊕
∆ ⊕ πN ⊕ γN can be written as

Heff = [H0 + Σ0
N + Σ0

∆] + [ΓπN,∆ + ΓγN,∆] + [vπN + vγπ]. (28)
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(a)

π∆ N π∆ ∆

(b)
∆ N ∆ ∆i S1i S1i S1 i S1 i S1 i S1 i S1J

µ
J

µ
J

µ
J

µ
J

µ
π∆ N

Ν
∆

(c)

Jπ( i S2 + 1

2
i S1 i S1 ) _ i S1 Jπi S1 ( _ i S2 + 1

2
i S1 i S1 ) Jπ

(d)

1

2
i S1 i S1 J∆ N

1

2
J∆ N i S1 i S1

µ µ µ µµ

N, ∆

FIG. 7: Loop Correction Γ1−loop
γN,∆ on γN → ∆ transition.

The mass correction terms, Σ0
N and Σ0

∆, are illustrated in Fig. 3. The vertex interactions

in Eq. (28) are

ΓπN,∆ = Γ0
πN,∆, (29)

ΓγN,∆ = Γ0
γN,∆ + Γ1−loop

γN,∆ . (30)

Here we have defined

Γ0
γN,∆ =

∫

dx < ∆ | A · Jµ
∆,N | γN > . (31)

The one-loop corrections Γ1−loop
γN,∆ are defined by Eqs. (24)-(27) and illustrated in Fig. 7.

Note that up to the second order in HI , there is no one-loop correction to the πN → ∆

vertex in Eq. (29).

The πN potential vπN in Eq. (28) is illustrated in Fig. 4. The non-resonant γN → πN

transition interaction is defined by

vγπ = vtree
γπ + v1−loop

γπ (32)

where vtree
γπ is defined by Eqs. (19)-(22) and illustrated in Figs. (6b)-(6d), and v1−loop

γπ is

the one-loop corrections which can be calculated by taking the matrix element of Eq. (23)

between γN and πN states.
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The SL model can be obtained from the effective Hamiltonian Heff of Eq. (28) by making

the following simplifications. First, the mass correction terms Σ0
N and Σ0

∆ are not treated

explicitly and are included in the physical nucleon mass mN=938.5 MeV and m∆ = 1299

MeV determined in Ref.[2]. Second, the one-loop corrections Γ1−loop
γN,∆ are not calculated

explicitly and ΓγN,∆, instead of Γ0
γN,∆, is adjusted to fit the data. Finally, the non-resonant

v1−loop
γπ is neglected.

The above derivation indicates that the method of unitary transformation has provided

a systematic way to improve the SL model. In the next two sections,we will explore the

consequences of these leading-order corrections derived in this section.

III. ONE-LOOP CORRECTIONS ON THE ONE-BARYON PROCESSES

To evaluate the one-loop corrections Eqs. (15)-(16) for the baryon masses and Eqs. (24)-

(27) for the γN → N and γN → ∆ transitions, we need to define the vertex function

FπB′,B of Eq. (3) and the matrix elements of currents of Eq. (4). As an exploratory step,

we assume that these can be calculated from a model within which the pion is coupled to

constituent quarks by the usual pseudo-vector coupling and the electromagnetic interaction

is introduced by the minimum substitution. We further assume that the constituent quarks

in N and ∆ are nonrelativistic and only have L = 0 s-wave configurations. Accordingly, the

usual nonrelativistic limit is also taken to define the couplings of π and γ with constituent

quarks. With these simplifications, we can cast the resulting πB → B′ vertex into the

following form

FπiB,B′(p,k; p′) =
i

√

(2π)3

1
√

2Eπ(k)

fπBB′

mπ
(SB′,B · k)(TB′,B · I i

π)FB′,B(k) (33)

Here I i
π is a vector associated with the pion isospin state i, and FB′,B(k) is a form factor

calculated from quark wave functions. The spin and isospin operators SB′B,TB′B are de-

fined as follows. For diagonal spin operators they are twice of the spin angular momentum

operator.

SNN = 2J = σ, (34)

S∆∆ = 2J = S∆; (35)
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while the transition spin operators are defined as

S∆N = S, (36)

SN∆ = S†. (37)

Within the considered SU(6) quark model, these operators are related to each other , as

given explicitly in Table I. The same table also define the reduced matrix elements for

TABLE I: Coupling constants. Here µS
N = µP /6, µV

N = 5µP /6 with µP = e/2mq. mq = 360 MeV

is the quark mass which is determined here by including the one-loop corrections to fit the proton

magnetic moment (see Table II).

B′ B SB′B(TB′B) < B′||SB′B||B > fπB′B µS
B µV

B′B

NN σ
√

6 fπNN µS
N µV

N

∆N S 2
√

72/25fπNN 0
√

72/25µV
N

N∆ S† −2
√

72/25fπNN 0
√

72/25µV
N

∆∆ S∆ 2
√

15 fπNN/5 µS
N µV

N/5

isospin operators τ for NN , T for ∆N , T † for N∆, and T∆ for ∆∆.

Let us first calculate the mass correction terms Σ0
N and Σ0

∆ that are given in Eqs. (15)-

(16). By using Eqs. (3), (14) and (33), we obtain in the rest frame of N and ∆

Σ0
N =

∫

dk

(2π)3
< msN

mτN
| [(

fπNN

mπ
)2 1

2Eπ(k)

σ · kσ · kτ · τ | FN,N(k) |2
mN −Eπ(k) −EN (k)

+ (
fπN∆

mπ
)2 1

2Eπ(k)

S · kS† · kT · T † | FN,∆(k) |2
mN − Eπ(k) − E∆(k)

] | msN
mτN

>, (38)

Σ0
∆ =

∫

dk

(2π)3
< ms∆

mτ∆ | (
fπ∆∆

mπ
)2 1

2Eπ(k)

S∆ · kS∆ · kT∆ · T∆ | F∆,∆(k) |2
m∆ − Eπ(k) − E∆(k)

| ms∆
mτ∆ > .

(39)

To perform the calculations, we need to define the form factor FB,B′(k) in Eq. (33).

To be consistent with the SL model, we here depart from the usual oscillator form and set

FB,B′(k) = (Λ2/(Λ2 + k2))2 with Λ = 650 (MeV/c)2 for all πBB′ vertices. Eqs. (38)-(39)

then lead to the following results

Σ0
N = Σ0

N (πN) + Σ0
N(π∆)

= −73.5MeV − 65.4MeV = −139.MeV
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Σ0
∆ = Σ0

∆(π∆)

= −76.6MeV (40)

Here we indicate the intermediate state in each pion loop term. Note that πN intermediate

state is excluded in the correction to the bare ∆ mass, since its effect is already included in

the rescattering term induced by the vertex interaction ΓπN,∆ of Eq. (29). The contribution

of this rescattering to the mass shift is

Σres
∆ = P

∫

dk

(2π)3
< ms∆

mτ∆ | (
fπN∆

mπ
)2 1

2Eπ(k)

S† · kS · kT † · T | FN,∆(k) |2
m∆ − Eπ(k) − EN(k)

| ms∆
mτ∆ >

= −46.2MeV (41)

where P denotes taking the principal-value part of the integration.

We now note that (H0 + Σ0
N + Σ0

∆) of the effective Hamiltonian Eq. (28) defines the

physical nucleon mass and the pole position W∆ = m∆ = 1232 MeV of the K-matrix of πN

scattering in P33 channel. Thus, we have the following relations

mN = m0
N + Σ0

N , (42)

and

W∆ = m0
∆ + Σ0

∆ + Σres
∆ . (43)

With the above results, the mass parameters m0
N and m0

∆ associated with H0 of the

effective Hamiltonian Eq. (28) can then be determined

m0
N = mN − Σ0

N = 1077MeV

m0
∆ = W∆ − Σ0

∆ − ΣRes
∆ = 1355MeV

The difference of the two bare masses are

δ0 = m0
∆ −m0

N = 278MeV (44)

The mass parameters m0
N and m0

∆ obtained above can be considered as data for determining

the parameters of a hadron structure model which ‘exclude’ the pion degree of freedom.

Accordingly, one can assume that H0 of Eq. (28), which is defined by these two bare

masses, can be identified with a model Hamiltonian defining the structure of the constituent

quarks within the nucleon and ∆.
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Most of the existing constituent quark model calculations[15, 16, 17, 18], determine their

parameters by fitting the mass difference δm = m∆(= 1232) −mN (= 938.5) = 294 MeV,

not by reproducing the absolute values of the masses of N and ∆. We note that this mass

difference is not so different from that given in Eq. (44). Thus we can identify H0 of Eq.

(28) as the constituent quark model Hamiltonian with its eigenfunctions | N > and | ∆ >

consisting of three quarks. Accordingly, the current matrix element Γ0
γN,∆ defined by Eq.

(31) can be identified with the prediction from the constituent quark models.

We now turn to calculating the electromagnetic form factors. The constituent quark

contribution is described by the current operator JB,B′ of Eq. (4). Within the considered

SU(6) constituent quark model and in the second quantization notation of Eq. (3), we can

write

JB′,B =
∫ dpdp′dq

(2π)3
[δ(p − q − p′)eiq·xb†B′(p′)bB(p)

× (e[
1

2
+
T z

B′,B

2
]
p + p′

2mB

δB′,B + [µS
BδB′,B + µV

B′,BT
Z
B′,B]iSB′,B × q)F em

B′,B(q2)

+(h.c.)] (45)

where F em
B,B′(q2) is an electromagnetic form factor, and the parameters µS

B and µV
B′B are

defined in Table I in terms of µP = e/(2mq) with mq denoting the quark mass. In consistent

with the SL model, the other two current operators in Eq. (4) are

Jπ =
∑

i,j

∫

dkdk′dq

(2π)3
[δ(k − q − k′)eiq·x 1

√

2Eπ(k)

1
√

2Eπ(k′)
a†πi(k

′)aπj (k)

× (−ieǫij3(k + k′))F em
π (q2) + (h.c.)] (46)

and

JB′,B,π =
∑

i,j

∫

dpdp′dkdq

(2π)9/2
δ(p − q − p′ − k)eiq·x 1

√

2Eπ(k)
b†B′(p′)a†πi(k)bB(p)

× (e
fπB′,B

mπ
ǫij3T

j
B′,BSB′,B)F em

B′,Bπ(q2) + (h.c)]. (47)

The corresponding charge density operators are

ρπ =
∑

i,j

∫

dkdk′dq

(2π)3

1
√

2Eπ(k)

1
√

2Eπ(k′)
F em

π (q2)eiq·x

[δ(k − q − k′)a†πi(k
′)aπj (k)(−ieǫij3(Eπ(k) + Eπ(k′)))

+ δ(k − q + k′)aπi(k′)aπj (k)(−ieǫij3(Eπ(k) − Eπ(k′))) + (h.c.)], (48)

ρB′,B = δB′,B

∫

dpdp′dq

(2π)3
[δ(p − q − p′)eiq·xb†B′(p′)bB(p)e

1 + T z
B′,B

2
F em

B′,B(q2) + (h.c.)](49)
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TABLE II: Magnetic moment of nucleon in unit µN

’tree’ Total with loop corrections

proton 2.61 2.75

neutron -1.74 -1.95

In the above equations, the form factors F em
B′,B(q2), F em

π (q2) and F em
B′,Bπ(q2) should in prin-

ciple be calculated from the associated hadron structure. This is a nontrivial task, as well

recognized. For this exploratory study, we simply set all of these form factors equal to

FV (q2) = 1/(1− q2/M2
V )2 with MV = 0.76 GeV being the mass of vector meson. Obviously,

this is the simplest prescription to maintain the gauge invariance.

With the above definitions, we can evaluate loop corrections defined by Eqs. (24)-(27)

by inserting appropriate intermediate states(illustrated in Fig. 7) and using Eq. (14) for S1

and Eq. (17) for S2.

To proceed, we need to first fix the quark mass mq which determine the current JB′B.

This is done by fitting the nucleon magnetic moments. The one-loop corrections (similar

to what are shown in Fig. 7) are included in the fit. We find that the nucleon magnetic

moments can be reproduced very well if we set the quark mass as mq = 360 MeV. The

results for the magnetic moments are shown in Table II. We see that the loop corrections

are about 5% for proton and 10 % for neutron. It is important to note that the size of

one-loop corrections depend heavily on the range Λ of the form factor FB′,B of Eq. (33).

We now turn to investigating the loop corrections on the γN → ∆ transition. Following

the formulation presented in SL model, the γN → ∆ vertex function calculated in the ∆

rest frame can be written in the following form

< ∆ | ΓγN→∆ | q > = − e

(2π)3/2

√

√

√

√

EN (q) +mN

2EN (q)

1√
2ω

3(m∆ +mN)

4mN(EN (q) +mN )
T3

× [iGM(q2)S × q · ǫ +GE(q2)(S · ǫσ · q + S · qσ · ǫ)

+
GC(q2)

m∆

S · qσ · qǫ0], (50)

where e =
√

4π/137, q = (ω, q) is the photon four-momentum, and ǫ = (ǫ0, ǫ) is the photon

polarization vector. The above definition allows us to calculate the multipole amplitudes of

the γN → ∆ in terms of GM(q2), GE(q2) and GC(q2). Explicitly, we have[3]

AM(q2) = [ΓγN→∆]M1 = NGM(q2) (51)
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AE = [ΓγN→∆]E2 = −NGE(q2) (52)

AC = [ΓγN→∆]C2 = N
| q |
2m∆

GC(q2), (53)

with

N =
e

2mN

√

m∆ | q |
mN

1

[1 − q2/(mN +m∆)2]1/2
(54)

We first discuss the results at q2 = 0 photon point. The values of AM , AE, and AC

determined in Refs.[2, 3] are listed in Table III. These are the quantities we would like to

interpret within the considered constituent quark model. Assuming that ΓγN,∆ of Eq. (30)

is what has been determined in the SL model, the values listed in Table III thus include

the contribution not only from the quark-excitation term Γ0
γN,∆ of Eq. (31), which can be

calculated from Eqs. (45) and (49), but also include the pion-loop contributions illustrated

in Fig. 7. These loop contributions can be calculated by inserting appropriate intermediate

states in the commutators of Eqs. (24)-(25). As an example, we write down the expression

for the mechanism Fig. 7b in the rest frame of ∆ (p∆ = 0, pN = −q)

< ∆| − iS1J
µ
B′,BiS1|N > =

∫

dk
∑

B=N,∆

< ∆|Γ0†
π∆,∆|π(k),∆ >< ∆|Jµ

∆,B|B >< π(k), B|Γ0
πB,N |N >

(m∆ − E∆(k) −Eπ(k))(EN(q) −EB(q + k) − Eπ(k))

=
∫

dk
∑

B=N,∆

F †
π∆,∆(0,−k,k) < ∆|Jµ

∆,B|B > FπB,N(−k − q,−q,k)

(m∆ −E∆(k) −Eπ(k))(EN (q) − EB(q + k) −Eπ(k))
(55)

An important point to note here is that the integrand in the loop-integration is independent

of the collision energy W and has no singularity in the integration region 0 ≤ k ≤ ∞. Thus

the included pion cloud effects are different from what were calculated from the SL model

: [vγπGπN(W )Γ̄πN,∆(W )] which depends on the collision energy W in the πN propagator

GπN(W ). Qualitatively speaking, the one-loop contributions of Fig. 7 are due to virtual

pions which are part of the internal structure of N or ∆, while the SL model only accounts

for the effects due to pions in scattering states which can reach the on-shell momentum

asymptotically.

The Q2 = 0 (Q2 = −q2 > 0) results from our complete calculations for all one-loop terms

in Fig. 7 are presented in Table IV. In the first row, we list the values from Γ0
γN→∆, which
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is due to photon interactions with constituent quarks. As expected, the assumed spherical

s-wave quark configurations do not have E2 and C2 transitions. In the same table we also

list the contribution from each loop contribution illustrated in Fig. 7. The terms under

’pion’ and ’Seagull’ are from Fig. 7a and 7c respectively. Fig. 7d gives the contribution

’Normalization’ which is the consequence of the appearance of the mass shifts Σ0
N and Σ0

∆

in the effective Hamiltonian Eq. (30) and is naturally derived here by using the unitary

transformation method. Fig. 7b contains the contributions due to spin transition and

convection current. Their separate contributions are listed under ’Spin’ and ’Convection’

respectively. We note that AC only has contribution from pion term because of the angular

moment selection rule.

We should emphasize here that the present calculations are based on a non-relativistic

quark model and can only be compared qualitatively with the empirical values (table III)

determined in the SL model. Thus we should not worry about their differences in absolute

magnitudes. Rather, we focus on the relative importance between AM , AE and AC listed in

Tables III and IV.

The first interesting result in Table IV is that the total one-loop correction (Total -

Γ0
γN,∆) for the magnetic form factor GM is only about 4 % of the ’bare’ value Γ0

γN,∆, mainly

due to the large cancellations between different contributions. In particular, the very large

contribution from ’Normalization’ of Fig. 7d plays a crucial role. We also see that the

calculated AE and AC in Table IV are in opposite signs of the values listed in Table III.

These results have the following implications. First, the Γ0
γN,∆ values of AE and AM in Table

IV could be nonzero and negative such that the total values become the SL values listed in

Table III. This can be the case if we assume that the quark wavefunctions of ∆ and/or N

could have a L = 2 d-state component. The other possibilities are that there could have

multi-pion loop corrections and exchange current contribution of the quark electromagnetic

current[19]. Within our formulation, some of these mechanisms can be derived from applying

the third-order unitary transformation U3. A more detailed study along this line is clearly

needed to make progress.

The calculated Q2− dependence of the γN → ∆ form factors are displayed in Figs. 8

and 9. The dominant M1 transition is shown in Fig. 8. The difference between the solid

and dashed curves is due to the one-loop corrections. It is very weak and only visible at very

low Q2. On the other hand, the pion cloud effects due to scattering states (dashed curve)
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TABLE III: ’bare’ helicity amplitudes of the SL model[1,2]. Unit is 10−3GeV −1/2.

AM 173.3

AE -2.3

AC -2.2

TABLE IV: ’bare’ helicity amplitudes in quark model with loop correction. Unit is 10−3GeV −1/2.

SL is the result from Ref.[1,2]

Γ0
γN,∆ Pion Spin Convection Seagull Normalization Total

AM 204.9 23.7 24.2 0 -3.3 -35.6 213.8

AE 0 2.8 -0.1 0.1 0.9 0 3.6

AC 0 1.1 0 0.0 0 0 1.1

is very large, As discussed in detail in Ref. [3], this finding explains why the conventional

constituent quark model predictions disagree with the empirical value of the magnetic M1

transition of γN → ∆. The present result for one-loop corrections do not change that

conclusion.

The situation for AE(Q2) and AC(Q2) is quit different. Here we do not have contribution

from quark excitation term Γ0
γN,∆ because of the assumed L=0 wavefunctions. We see

that the calculated one-loop corrections (solid curves) are comparable in magnitudes to the

pion cloud effects due to scattering state (dashed curves) calculated in SL model. More

importantly, they have very different Q2-dependence and are opposite in signs. As seen in

Eq. (30), the solid curves must be interpreted as part of the bare form factors determined

phenomenologically in SL model. Namely, the form factors obtained from subtracting the

solid curves from SL model’s bare form factors are the contribution from quark excitation.

This will be an important information for testing various hadron structure calculations.

However, such information can not be realistically extracted here because of the simplicity

of the model employed.
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curves are from pion scattering calculated in SL model.

IV. ONE-LOOP CORRECTIONS ON NON-RESONANT γN → πN

One of the difficulties the SL model has in describing the data is from the non-resonant

amplitude. In this section, we would like to explore whether this can be improved by

including the one-loop corrections v1−loop
γπ of Eq. (32). As a start, we will focus on the near
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threshold region and consider only the the E0+ amplitude. A complete calculation of v1−loop
γπ

for all partial waves up to ∆ resonance energy is much more involved and will be explored

elsewhere.

First, we point out that the SL model failed to describe the near threshold γp → π0p

data. For example, at Eγ = 145 MeV the SL model gives (after taking into account the

effects due to the mass difference between π0 and π± )

E0+(145MeV ) = −2.47(Born) + 2.31(Rescattering) = −0.15[10−3/mπ+ ] (56)

where Born is from the non-resonant production operator vtree
γπ constructed in SL model,

Rescattering include the effects due to final πN interaction. The empirical value is Eexp
0+ (145

MeV) ∼ -1.50. In getting the above result, we find that the main contributions to the Born

term are from the nucleon-direct and nucleon-exchange diagrams, while the rescattering

term is mainly from pion-pole and contact interaction through γ + p → π+ + n → π0 + p

charge-exchange process. We also find that the s-wave charge exchange pion rescattering

is dominated by the ρ-exchange π − N potential and the Born approximation tπN ∼ vπN

is accurate. Furthermore the short range approximation of ρ-exchange potential (1/(m2
ρ +

(pN − p′
N)2) ∼ 1/m2

ρ) is accurate within 10% in determining the rescattering effects in the

considered near threshold energy region. With these considerations, the one-loop corrections

near threshold can be calculated with the following much simplified Hamiltonian

HI =
fπNN

mπ
ψ̄Nγ5γµ∂

µ~φπ · ~τψN + λψ̄Nγ
µ~τψN · ~φπ × ∂µ

~φπ . (57)

Here the second term is a contact interaction with the strength determined from the ρ-

exchange coupling constants : λ = gρππgρNN/(2m
2
ρ). By minimum substitution, the second

term of Eq. (57) will generate a interaction current

jµ
N,Nππ = eλ[ψ̄Nγ

µ~τψN × ~φπ] × ~φπ . (58)

It induces an electromagnetic contact interaction involving two pions. To maintain the gauge

invariance within the model defined by the simplified interaction Hamiltonian Eq. (57), this

current is included in the calculation along with the currents Jπ, JB′,B and JB′,Bπ given in

Eqs. (46)-(48) and illustrated in Fig. 2. All coupling constants and vertex form factors are

taken from SL model.

With the above simplified model, we first re-calculate the rescattering contributions,

∼ vtree
γ,π GπN (W )vπN to the E0+ amplitude for γp → π0p. The results at Eγ = 145 MeV are
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listed in Table V. It is instructive to note here that the calculated rescattering contribution

involves cancellation between the terms (d) and (e). The total rescattering value 2.36 is very

close to the value 2.31 of the rescattering term in Eq. (56) of the SL model. This justifies

the use of the simplified model defined by Eqs. (57) and (58).

TABLE V: Rescattering contributions to the E0+ amplitude of γp → π0p at 145 MeV, calculated

from mechanisms (b)-(e) illustrated in Fig. 6 using the model defined by Eqs. (57)-(58).

Diagram (b) (c) (d) (e) sum

-0.074 -0.685 -1.966 5.087 2.36

(a) (b) (c) (d)

FIG. 10: Subset of loop corrections on the γN → πN transition amplitude.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 11: Subset of Loop corrections on the γN → πN transition amplitude.

The one-loop corrections can be calculated from Eq. (23) by inserting appropriate in-

termediate states. The resulting amplitudes are illustrated in Figs. 10 and 11. Note that

diagrams in Figs. 10 and 11 are not time-ordered diagrams. Rather they just illustrate the
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structure of the matrix element of each term in v1−loop
γπ . As seen from Eq. (14) and Eq. (17),

the loop integrations for all processes in Figs. 10 and 11 will involve energy − independent

propagators associated with these two operators. Thus, although the diagrams in Fig. 10

look similar to the rescattering terms, but they are energy − independent matrix elements.

The calculations for these loops are tedious but straightforward, and will not be elaborated

here.

TABLE VI: one-loop contributions to the E0+ amplitude of γp → π0p at 145 MeV, calculated

from mechanisms illustrated in Fig. 11 using the model defined by Eqs.(54).

Diagram E0+ Diagram E0+

Fig. 10 (a) -0.079 (c) -0.024

(b) -0.090 (d) 0.475

Fig. 11 (a) 0.157 (f) -0.418

(b) -1.192 (g) 0.00

(c) 0.875 (h) 0.00

(d) -0.085 (i) -0.696

(e) -1.011 (j) 0.699

Sum = -1.39

Our results at Eγ = 145 MeV for each of the one-loop corrections shown in Figs. 10 and

11 are listed in Table VI. The results listed in Tables V and VI lead to

E0+(145MeV ) = −2.47(Born) + 2.32(Rescattering) − 1.39(Loop) = −1.54 (59)

This reproduces the empirical value Eexp
0+ (145 MeV) ∼ -1.50. The calculated effect of the

one-loop corrections for E0+ in the near threshold energy region is shown in in Fig. 12.

Clearly, the one-loop corrections drastically reduce the magnitudes and bring the results to

agree with the empirical values. The kinks due to the cups effect are reproduce well in our

calculations.

In Fig. 13, we show that the one-loop corrections on the E0+ amplitude can change

significantly the calculated angular distributions to better agree with the data. To see the

full one-loop correction effects, we need to also calculate other multipole amplitudes. This

along with the results for the ∆ region will be explored elsewhere.
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V. SUMMARY AND OUTLOOK

In this paper, we have applied the unitary transformation to derive the leading-order

corrections on the effective Hamiltonian of the SL model for electromagnetic pion production

reactions. We have investigated the one-loop corrections on the masses of N and ∆, the
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γN → ∆ vertex, and the non-resonant pion production operators. Qualitatively speaking,

the derived one-loop corrections are due to the virtual pions which are part of the internal

structure of N or ∆, while the pion cloud effects generated within the SL model or the

other dynamical models, such as the Dubna-Mainz-Taipei (DMT) model [5], only account

for the effects due to pions in the scattering states which can reach the on-shell momentum

asymptotically.

With the one-loop corrections included in determining the mass parameters, we find that

the free Hamiltonian of the model can be identified with the conventional constituent quark

model. We then proceed to apply such a constituent quark model to calculate the one-loop

corrections on the γN → ∆ transition form factors. It is found that the one-loop corrections

on the magnetic M1 transition is very small. Our results further establish the conclusion

reached by the SL model that the large discrepancy between the conventional constituent

quark model predictions and the empirical values are due to the pion cloud effects associated

with the pions in scattering states.

The calculated one-loop contributions to the electric E2 (AE) and Coulomb C2 (AC)

form factors of the γN → ∆ transition are found to be in opposite signs of that due to pion

cloud associated with the scattering states. One possible implications of this result is that

the extracted empirical values of SL model could be largely due to the nonspherical L = 2

intrinsic quark excitations which could lead to nonzero and negative contributions to AE and

AC . On the other hand, there could have higher-order exchange current contributions which

are not included in this work, but must be also calculated for a complete understanding of

the empirical values of SL model. Clearly more works are highly desirable.

We have also found that the one-loop corrections on the non-resonant pion production

operator can resolve the difficulty the SL model encountered in reproducing the empirical

E0+ amplitude of near threshold π0 photoproduction. It will be worthwhile to further

extend this work to calculate these one-loop corrections for higher partial waves. Some of

the discrepancies between the SL model and the data in the ∆ excitation could be removed

by including these corrections. Our effort in this direction will be reported elsewhere.

To end, we emphasize that the SL model is obtained from keeping only the lowest order

terms of a formulation within which the higher order terms can be rigorously derived. At-

tempts to fit the data by adjusting the current SL model are not justified theoretically. The

most important task to improve the SL model is to include these corrections order by order
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until the convergence of the predictions has achieved. In this work we have taken a very first

step in this direction. Undoubtly, much more works are needed to complete a consistent

dynamical model of electromagnetic pion production reactions.
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